Rutgers University: Algebra Written Qualifying Exam August 2018: Problem 2 Solution

Exercise. Let p and q be distinct primes. Let $\overline{q} \in \mathbb{Z}/p\mathbb{Z}$ denote the class q modulo p and let k denote the order of \overline{q} as an element of $(\mathbb{Z}/p\mathbb{Z})^*$. Prove that no group of order pq^{ℓ} with $1 \leq \ell \leq k$ is simple.

Solution.
Let $ G = pq^{\ell}$ such that $1 \leq \ell \leq k$.
Since k is the order of q in \mathbb{Z}_p ,
$q^k \equiv 1 \mod p$, and
$a^j \not\equiv 1 \mod p \text{ for } 1 \leq j \leq k$
$n_p \cong 1 \mod p \text{ and } n_p \mid q^\ell$
$\implies n_p = 1 \text{ or } n_p = q^k \text{ and } \ell = k$
If $n_p = 1$, there is a unique Sylow <i>p</i> -subgroup
\implies the Sylow <i>p</i> -subgroup is normal in <i>G</i>
\implies G is not simple.
If $n_p = q^k$, then $\ell = k$ and $ G = pq^k$
Since the Sylow <i>p</i> -subgroups have prime order, they are cyclic
If P and Q are two Sylow p -subgroups
$P \cap Q = \{e\}$ or P .
This is because $P \cap Q$ is a subgroup of both P and Q and its order must divide p.
If $n_p = q^k$ then there are q^k Sylow <i>p</i> -subgroups that pairwise only intersect with the
identity element.
So, the q^k Sylow p -subgroups contain a total of $(p-1)q^k = pq^k - q^k$ elements of order p .
The remaining q^{κ} elements must be elements of the Sylow q - subgroup:
$\implies n_q = 1$
\implies The Sylow q -subgroup is normal
\implies G is not simple