Rutgers University: Algebra Written Qualifying Exam

August 2018: Problem 2 Solution

Exercise. Let p and q be distinct primes. Let $\bar{q} \in \mathbb{Z} / p \mathbb{Z}$ denote the class q modulo p and let k denote the order of \bar{q} as an element of $(\mathbb{Z} / p \mathbb{Z})^{*}$. Prove that no group of order $p q^{\ell}$ with $1 \leq \ell \leq k$ is simple.

Solution.

Let $|G|=p q^{\ell}$ such that $1 \leq \ell \leq k$.
Since k is the order of q in \mathbb{Z}_{p},

$$
\begin{array}{ll}
q^{k} \equiv 1 & \bmod p, \text { and } \\
q^{j} \not \equiv 1 & \bmod p \text { for } 1 \leq j<k
\end{array}
$$

$n_{p} \cong 1 \bmod p$ and $n_{p} \mid q^{\ell}$
$\Longrightarrow n_{p}=1$ or $n_{p}=q^{k}$ and $\ell=k$
If $n_{p}=1$, there is a unique Sylow p-subgroup
\Longrightarrow the Sylow p-subgroup is normal in G
$\Longrightarrow G$ is not simple.
If $n_{p}=q^{k}$, then $\ell=k$ and $|G|=p q^{k}$
Since the Sylow p-subgroups have prime order, they are cyclic
If P and Q are two Sylow p-subgroups
$P \cap Q=\{e\}$ or P.
This is because $P \cap Q$ is a subgroup of both P and Q and its order must divide p.
If $n_{p}=q^{k}$ then there are q^{k} Sylow p-subgroups that pairwise only intersect with the
identity element.
So, the q^{k} Sylow p-subgroups contain a total of $(p-1) q^{k}=p q^{k}-q^{k}$ elements of order p.
The remaining q^{k} elements must be elements of the Sylow q - subgroup:
$\Longrightarrow n_{q}=1$
\Longrightarrow The Sylow q-subgroup is normal
$\Longrightarrow G$ is not simple

